MATHEMATICS (24 Feb 2021) Shift-2

- Find the value of ${}^{n+1}C_2 + 2({}^{2}C_2 + {}^{3}C_2 + \dots + {}^{n}C_2) = ?$ (1) $\frac{n(n+1)(2n-1)}{6}$ (2) $\frac{n(n+1)(2n+1)}{6}$ (3) $\frac{(n-1)n(n+1)}{6}$ (4) $\frac{n(n+1)}{2}$ 1. 2. If A and B are subset s of X= {1,2,3,4,5} then find the probability such that $n(A \cap B) = 2$ (3) $\frac{35}{2^9}$ $(1)\frac{65}{2^7}$ $(2)\frac{65}{2^9}$ $(4)\frac{135}{2^9}$ Given f(0) = 1, $f(2) = e^2$ also f'(x) = f'(2 - x), then the value of $\int_{-\infty}^{2} f(x) dx$ is 3. (1) $1 - e^2$ (2) $1 + e^2$ (3) e (4) e^2 A curve y=f(x) passing through the point (1, 2) satisfies the differential equation $x \frac{dy}{dx} + y = bx^4$ such that 4. $\int f(y) dy = \frac{62}{5}$. The value of b is (3) $\frac{32}{2}$ (4) $\frac{62}{5}$ (1) 10(2) 11 The area of the region defined by $5x^2 \le y \le 2x^2 + 9$ is 5. (1) $6\sqrt{3}$ (2) $12\sqrt{3}$ $(3) 18\sqrt{3}$ (4) $9\sqrt{3}$ A aeroplane is flying horizontally with sped of 432 km/hr at height h meter from ground its angle of elevation 6. from a point on ground is 60°. After 20 sec its angle of elevation from same point is 30° then the 'h' is equal to
 - (1) $1200\sqrt{3}$ (2) $600\sqrt{3}$ (4) $1800\sqrt{3}$ (4) $1000\sqrt{3}$
- 7. A curve $y = ax^2 + bx + c$ passing through the point (1, 2) has slope at origin equal to 1 then ordered triplet (a,b,c) may be

(1) (1, 10) (2)
$$\left(\frac{1}{2}, 1, 0\right)$$
 (3) $\left(-\frac{1}{2}, 1, 1\right)$ (4))2,-1, 0)

8. The value of
$$\tan\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)$$
 is
(1) $\frac{1}{\sqrt{7}}$ (2) $\frac{1}{\sqrt{5}}$ (3) $\frac{2}{\sqrt{3}}$ (4) None of these

MOMENTUM

The value of $\int [x^2 - 2x - 2] dx$ ([.] denotes greatest integers function) 9. (3) $-1 - \sqrt{2} - \sqrt{3}$ (4) $1 - \sqrt{2} - \sqrt{3}$ (1)/04(2) - 5Which of the following conic has tangent 'x + $\sqrt{3}y - 2\sqrt{3}$ ' at point $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$? 10. (1) $x^2 + 9y^2 = 9$ (2) $y^2 = \frac{x}{6\sqrt{3}}$ (3) $x^2 - 9y^2 = 10$ (4) $x^2 = \frac{y}{6\sqrt{3}}$ 11. The negation of the statement $\sim p \land (p \lor q)$ is $(3) \sim p \wedge q \qquad (4) \sim p \vee \sim q$ (2) p∨ ~ q (1) $p \wedge \sim q$ Equation of plane thorugh (1, 0, 2) and line of intersection of planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{i} - 2\hat{j}) = -2$ is 12. (1) $\vec{r} \cdot (\hat{i} + 7\hat{j} + 3\hat{k}) = 7$ (2) \vec{r} . $(3\hat{i}+10\hat{i}+3\hat{k}) = 7$ $(3)\vec{r} \cdot (\hat{i} + \hat{i} - 3\hat{k}) = 4$ (4) $\vec{r} \cdot (\hat{i} + 4\hat{i} - \hat{k}) = -7$ A is 3 x 3 square matrix and B is 3 x 3 skew symmetric matrix and X is a 3 x 1 matrix, then equation 13. $(A^{2}B^{2} - B^{2}A^{2}) X = 0$ (Where O is a null matrix) has/have (1) Infinite solution (2) No solution (3) Exactly one solution (4) Exactly two solution If $\begin{vmatrix} f(x) & f'(x) \\ f'(x) & f''(x) \end{vmatrix} = 0$, f(0) = 1 and f'(0) = 214. (1) [6, 9] (2)[9, 12](3) [8, 10] (4) [5, 7] Find a point on the curve $y = x^2 + 4$ which is at shortest distance from the line y = 4x - 1. 15. (1)(2,8)(2)(1,5)(3)(3, 13)(4) (-15) Let = $\begin{cases} -55x & ; \quad x < -5 \\ 2x^3 - 3x^2 - 120x & ; \quad -5 \le x < 4 \\ 2x^3 - 3x^2 - 36x + 10 & ; \quad x \ge 4 \end{cases}$ 16. Then interval in which f(x) is monotonically increasing is $(2)(-\infty,-4)\cup(5,\infty)$ $(1)(-5, -4) \cup (4, \infty)$ $(4)(-5, -4) \cup (3, \infty)$ $(3)(-5, 4) \cup (5, \infty)$ If a, b, c are in A.P. & centroid of the triangle with vertices (a, c), (a, b), (2, b) is $\left(\frac{10}{3}, \frac{7}{3}\right)$ and α , β are roots 17. of the equation $ax^2 + bx + 1 = 0$, then $\alpha^2 + \beta^2 - \alpha\beta$ $(1) - \frac{71}{256}$ $(2)\frac{71}{256}$ $(3)\frac{69}{256}$ $(4) - \frac{69}{256}$

MOMENTUM

- **18.** Given $a + \alpha = 1$, $b + \beta = 2$ and $\alpha f(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}$ then value of $\frac{f(x) + f\left(\frac{1}{x}\right)}{x + \frac{1}{x}}$
- **19.** Find the maximum value of 'k' for which the maximum value of variance of 10 elements is 10 in which 9 values are 1 and one value of is k. (Where k is integer)
- **20.** Distance of p (x,y) from (5, 0) is thrice as distance of P(x,y) from (–5, 0). If locus of P is circle with radius 'r' then final the value of $4r^2$.
- **21.** Four numbers whose sum is $\frac{65}{12}$ are in G.P. Sum of their reciprocals is $\frac{65}{18}$ and product of first three of them is

1. If third term is lpha then find value of 2lpha .

- **22.** Three are 10 students S_1 , S_2 S_{10} . Find the number of ways to form 3 groups G_1 , G_2 , G_3 such that all gorups has at least 1 member and group G_3 has almost 3 members.
- **23.** At point P (5, 7) on circle P(5, 7) on circle $(x 2)^2 + (y 3)^2 = 25$ a tangent and a normal is drawn. The area of triangle formed by this tangent normal with x axis is λ then 24λ is.